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SUMMARY

A graphical method is presented for determining the motion of a
freely oscillating system of one degree of freedom stabilized by a
controlling device which applies control force in proportion to the
displacement of the system, to its rate of change of displacement, or
both. The controlling member is assumed to have limitations on its
meximum deflection and on its maximum rate of movement. Several
examples are presented to illustrate the method.

From these examples, it is shown thet, at sufficiently small
amplitudes, the period and damping of the system correspond to those
provided by linear operation of the control whereas, at very large
amplitudes, the period and damping approach those of the uncontrolled
system. At intermediate smplitudes, if the deflection of the control
is limited, a smooth transition between these two conditions of period
and demping tekes place whereas, if the rate of control movement is
limited, the damping may be reduced below that of the uncontrolled
system. In some cases, limiting the rate of control movement may
produce instability over a range of amplitudes.

If the control produces primerily an increase in damping, the
control remains effective in producing damping even at amplitudes
several times that at which saturation effects are first encountered.
This effect may be useful in reducing the power requirements of yaw
dampers for airplanes.

INTRODUCTION

Autopilots and other automatic control devices are frequently
designed on the basis of linearized theory. In practice, however, the
limits of linear operation of these devices may be frequently exceeded.
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In some cases, the use of a system designed to exceed its linear range
mey be advantageous. For example, recent flight tests of devices
intended to improve the damping of the lateral oscillations of
airplanes have shown that large increases in demping are required only
at small amplitudes of oscillation. TFor this reason, it may be
desirable to reduce the power and force output of the controlling
device by limiting either its deflection range, its maximum rate of
movement, or both, in order that the device may be made as small and
as light as possible. In practice, such a control would frequently
be required to operate in the range of amplitudes where these limitations
are reached. Calculation of the effects of the device under these
conditions is therefore of interest.

In electrical work, effects resulting from operating beyond the
linear range of a device have been called saturation effects. An
analysis of the motion of a control system when saturation effects
are involved may frequently be accomplished by conventional methods
but the process is tedious, particularly when a number of initial
conditions are to be investigated. Problems of this type may be
conveniently solved by use of an electric analog computer (refs. 1
and 2) provided such equipment is available. If an analytical solution
is required, or if an analytical check on the results obtained from an
analog computer is desired, a simple graphical procedure for solving
such problems may be of interest.

A method frequently found convenient by previous investigators
for analyzing nonlinear systems is the use of the phase plane. This
plene, which consists of a plot of the velocity of the system against
its displacement, has been used by N. Minorsky (ref. 3) and others for
the study of problems involving nonlinear force variations. The same
method has been applied by Herbert K. Weiss (refs. 4 and 5) to a study
of relay servomechanisms which involve discontinuous force variations.
By a slight modification of the usual phase-plane technique, Irmgard
Fligge-Lotz (ref. 6) has obtained solutions for the motion of an oscil-
latory system such as an aircraft controlled by discontinuous or on-off
controls. In the present report, methods somewhat similar to those used
in reference 6 are applied to the solution of some problems involving
saturation effects.

The following analysis is applied to the case of a freely
oscillating system with one degree of freedom stabilized by a controlling
device which applies control force in proportion to the displacement of
the system, to its rate of change of displacement, or both. The
controlling member is assumed to have limitations on its maximum
deflection and on its maximum rate of movement. Graphical solutions
for several problems of this type are presented to illustrate the
method.
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SYMBOIS

A, B constants (see eq. (9))
c constant, VA2 + B2
D differential operator, d/ds
Do differential operator, d/dsc
I, monment of inertla in yaw
N yawing moment, or ratio N5E/NW
R maximum rate of rudder movement in terms of s
r radius (in polar coordinates)
8 nondimensional measure of time, .t
As change in nondimensional time
B¢ nondimensional measure of time for‘linear range of operation

of control, s|f1 + N §§I

I/ oy

t time
X, ¥ rectangular coordinates (see egqs. (17) and (18))
Op rudder angle
] angle (in polar coordinates)
A9 change in angle 6

¢ damping ratio of uncontrolled airplane
;C damping ratio for linear range of operation of control,
9%
2t + N L
oDy

2\/1 s P
oy

¥ angle of yaw
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¢ phase angle, tan~1

o I

w damped natural frequency of uncontrolled airplane in terms

of time unit s, \1 - {2

®s damped natural frequency for linear range of operation of
control in terms of time unit s, VE - gc2
oy, undamped natural frequency of uncontrolled airplane,
radians/sec
Wy undamped natural frequency for linear range of operation of
c
36
control, m\/1 + N 57’ radians/sec
oN
Ny =<
¥
oN
N. =
5 ~ 35,
Ny = §¥
oV
Subscripts:
0 initial value or value at start of an interval
max maximum value

A dot over quantity denotes differentiation with respect to
actual time.

ANATYSIS

Theoretical development.- An extensive analysis of the motion of
missiles under the influence of discontinuous automatic controls is
presented in reference 6. This reference employs a modified phase-
plane method and contains a detailed development of the theory involved.
The theoretical background required for the present analysis is very
similar to that utilized in reference 6. In particular, the methods
of reference 6 could be employed in the region where the control is
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either against its stop or moving at its maximum rate. The methods of
reference 6, however, are not convenient for handling the transition
from the nonlinear to the linear range of operation. Somewhat different
graphical procedures are employed herein to handle this problem. In
order to derive these methods, a review of the theory starting with the
basic equations of motion appears desirable, although some repetition
of the initial development of reference 6 is involved.

In analyses of nonlinear systems by the phase-plane method, the
velocity of the system is ordinarily plotted agalnst its displacement.
The curve traced out by the system during its motion is called a
trajectory in the phase plane. TFor a single-degree-of-freedom linear
system with damping performing a free oscillation, the trajectory may
be shown to be a spiral converging on the origin. This spiral is not
a true logarithmic spiral but is somewhat distorted. It is shown in
reference 6, however, that, if the values of velocity and displacement
are plotted on a skewed system of axes, a true logarithmic spiral
results. The use of a logarithmic spiral is very advantageous for
graphical analysis, inasmuch as all such spirals for a given value of
the damping ratio are congruent. As a result, only one spiral for a
glven value of the damping ratio needs to be plotted. This spiral may
then be made to pass through any given point in the plene to fit the
desired initial conditions simply by rotation about the origin. In
order to obtain the relations required for the graphical construction
described herein, expressions are required for the displacement and
veloclty of the controlled system for various conditions of the control.
These expressions are now derived.

For purposes of illustration, the equations of motion are set up
for an airplane oscillating in yaw and controlled by the rudder. The
same analysis may be applied, however, to any single-degree-of-freedom
system obeying similar equations of motion and laws of control. The
equation of motion is as follows:

L - W - Wy = BN

In problems of this type, the number of parameters may be reduced
by expressing the oscillatory characteristics in terms of a natural
frequency w, and a damping ratio { which gives the fraction of

critical damping (ref. 7). These quantities for the uncontrolled
system are defined as follows:
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Also, let N = ﬁfz. In terms of these parameters, the equation of

motion becomes
. - 2 2
b+ 2tond + ey = -8y (1)
A further reduction in the number of parameters may be obtained

by use of the nondimensional measure of time s = wpts Let
D= %—; equation (1) then becomes
8

D2y + 28Dy + ¥ = -5, N (2)

When the system is in its linear range, the rudder angle is
proportional either to the angle of yaw, to the yawing velocity, or to
a combination of these quantities. The law of control for the rudder
in the linear range of operation is therefore

o = ¥ 2 4 Dy SE (3)

When the limits of linear operation are exceeded, the rudder angle is
either constant (against a stop) or changing at a constant rate. The
rudder engle in this case may be expressed by the equation

By = By + s (4)

where R represents the constant rate of rudder movement 1n terms of
the nondimensional time unit s. The solutions of the equation of
motion for these cases are now discussed.

First, the solution for the linear range of operation is considered.
When equation (3) is substituted into equation (2), the following result
is obtained:

D%+D¢<2§+N%>+w(l+n%il)=o (5)

Meke a second change in the time wvariable,
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Be = B\l + N%%z (6)
and let D, = %E—' Equation (5) then changes back to the form of
equation (2), )

DW + 2Dk + ¥ = O (7)

where
aar
_ 2Ty
F3)
2\/1 + NSE;

The quantity Qc represents the damping ratio of the controlled

Ec (8)

alrplane. The natural frequency of the controlled sirplane in radians
per second is obtained from equations (1), (2), and (5) as

. aar
e T B\ Ny

Before writing down the solution of equation (7), the solution of
equation (2) is presented for the case in which the rudder is against
a stop or moving at a constant rate. Under these conditions, the
right-hand side of the equation is not zero. The solution of
equation (7), the right-hand side of which is zero, is then obtained
from this result as a special case. When the expression for the rudder
angle (eq. (%)) is substituted into equation (2), the solution for the
variation of ¥ with s for specified initial conditions Vg (DW)O,
and Sro is as follows:

¥ = N(or - 2(R) - RNs + e5(A cos ws + B sin ws) (9)
where
A=y + N(Sro - 2;3)
B = a—ljlgw)o + LYy + 5r0N€ - (2;2 - 1)Rlﬂ
o=V1-¢
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The value of DV may be expressed as a function of s as follows:

Dy = -RN + e~ 55(-a sin @s + aB cos ws) -
;Ey + N(Sro - 2§R) + RNﬂ (10)

The solution of equation (7), which applies when the control is
operating in Its linear range, may be obtained as a simplified case
from expressions (9) and (10), because in this case the form of the
differential equation is the same but the right-hend side of the
equation is zero. The solution of equation (7) is obtained by setting
8r, @nd R equal to zero and by substituting . and D, for ¢

and D in equations (9) and (10).
The derivation of the relations required for the graphical
construction, in which the motion is represented by a true logarithmic

spiral rather than by a distorted spiral, is now presented. From
equations (2) and (%)

Dy + 2Dy = —y - (51.0 + Rs)N (11)

Substituting the value of ¥ from equation (9) into equation (11)
yields the relation

-Dew - 2t(Dy + RN) = e"gS(A cos ws + B sin ws) (12)
By rearranging equation (10), the following equation is obtained:

DY + RN + ng N(Bro - 2§R) + RNS] - 0e=55(_A sin ws + B cos ws)  (13)

In equations (12) and (13), set

A=Csin g

B =C cos ¢

2 2 .. -1A
where C = VA< + B° and ¢ = tan 5+ Equation (12) then becomes

wCe_gs(sin @ cos ws + cos ¢ sin ws)

wce~55 sin (s + @) (1%)

a)ED%]; - 2t (DY + RN]
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Equation (13) becomes

DV + BN + §EE+ N(?ro - EQR) + Rﬁ% mCe'gs(sin @ sin ws + cos @ cos ws)

= age~55 cos (s + @) (15)

The values on the right-hand sides of equations (14) and (15) may be
identified as the rectangular coordinates of a logarithmic spiral
which, in polar coordinates, has the formula

, - roe-EG/w (16)
where 6 = ws + § and ro = mCe§¢/m.

In a set of rectangular coordinates, therefore, values of x
and y are plotted such that

X = wEDzﬂr - 2t(Dy + RNE] (17)
y=D11r+RN+CEIf+ N(5r0-2§R)+RN;J (18)

The resulting curve, which represents a trajectory of the motion, is a
logarithmic spiral centered at the origin. 1In practice, the initial
angle ¢, which is related to the initial conditions of the problem,
never has to be determined because, as mentioned previously, a
logarithmic spiral may be rotated about the origin to pass through any
point without changing its shape. A relationship given with equation (16)
shows that the nondimensional time elapsing for any change in the angular
coordinate 6 is given by

AP

A5=E)—

The convergence of the spiral is determined by the exponential factor
Q/&. Actually, only one variable is involved because, as stated in

connection with eq. (9), ® = Vl - t2,

The coordinate system for the logarithmic spiral, of course,
differs from the velocity-displacement coordinate system ordinarily
used in phase-plane studies. From the rectangular coordinates x and
¥, however, the values of D°¥, DY, and V¥ may be determined as
follows: First, eliminate V¥ between equations (11) and (18). The
result is

y = D¥(1 - 282) - tD2¥ + RN(1 - 2t2) (19)
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Equations (17) and (19) express x and y in terms of DV and D3V,
If the value of DV is eliminated between equations (17) and (19),

2y (1-2t?)
2¢ 2fw * (20)

y:

Equation (20) allows lines of constant yawing acceleration DV to be
drawn in the x,y plene. These lines are straight lines with a slope

- 15_;0{'2— The line for D2V = O passes through the origin.

If the value of DEW is eliminated between equations (17) and (19),

y=D1U+RN+% (21)

Equation (21) allows lines of constant yawing velocity DV to be drawn
in the x,y plane. These lines are straight lines with the slope Q/w.
The line for DYy = -RN passes through the origin.

In order to determine the angle of yaw 1V, substitute D2V + 2tDy
from equation (11) into equation (17). The result is an alternate

definition of x,
x = wE+ N(Bro - 2§R) + RNEI (22)

This equation shows that lines of constant V are parallel to the
y-axis. The grid of lines of constant V¥ 1s moving across the X,y
plane at a constant rate for the case in which the rudder is moving at
a constant rate. This result is shown by the term RNs, which represents
a shift in the origin of the grid of V¥ lines by an amount proportional
to the nondimensional time s.

Because such a moving grid is inconvenient for graphical work, the
value of V¥ may be obtained more easily for the case in which the
rudder is moving at a constant rate by reading values of DY and ¥
from their fixed grids and using equation (11) to determine the value
of V. TFor the case where the rudder angle is constant, however, the
value of R 1is zero, and equation (22) reduces to

X = cn(\lr + N6r0> (23)

In this case, lines of constant  are fixed lines, parallel to the
y-axis. The line for ¥ = “N5r0 passes through the origin.
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The geometrical relationship among the three sets of grid lines
for reading D2V, DY, and V¥ is shown in figure 1. This relationship
may be derived from equations (20), (21), and (23). The grid lines for

DV constant are rotated from the horizontal by the angle tan~1 &; the

grid lines for D2¢' constant are rotated from the vertical by twice

this angle, which equals tan'l ——EEQL—H The spacing between grid

1 -2t
lines for D°¥ = O and Dew =1 1is shown to be one unit when measured
along a line of constant Dy. Similarly, the spacing between the lines
for Dy =0 and DY =1 1is one unit when measured along a line of
constant Dgw. The spacing of the grid lines for reading V is such
that these grid lines would pass through the intersections of a grid
line for DV constant and the various grid lines for Dzw. These
geometric relationships may be useful in constructing the grids for
graphical work. The grids drawn in figure 1 are shown centered at the
origin of the x and y coordinates, which is the origin of the spiral.
In use, however, the line Dy = O often does not pass through the
origin of the spiral because, as shown by equation (21), the line for
Dy = -RN passes through the origin when the rudder is moving at a
constant rate. The spacing and direction of the grid lines, however,
are the same as those shown in figure 1. Similaerly, the grid for
reading V 1is often moved laterally with respect to the other grids
while its direction i1s maintained paralled to the y-axis.

Application of theory.- The results just presented are now
summarized briefly and an attempt is made to show their physical
meaning. The analysis considers the motion of a linear system of one
degree of freedom under the influence of a linearly increasing force
(corresponding to a constant rate of rudder deflection), a constant
force (corresponding to a fixed rudder deflection), or zero force
(corresponding to motion in the linear range of operation). In each
case, the motion is represented by a logarithmic spiral in a certain
system of coordinates designated the x,y plane. Values of Dzw, Dy,
and V¥ may be read from suitable grids of lines superimposed on this
plane.

In the case of a linearly increasing force, the displacement of a
single-degree-of-freedom system is known to increase linearly with time
after the transient oscillation has damped. The velocity of the system
approaches a constant value, and the acceleration approaches zero.

This behavior agrees with that given by equations (22), (21), and (20),
which show that the grid of lines of angle of yaw move across the x,y
plane at a constant rate, whereas the spiral representing the motion
converges to a certain value of yawing velocity and to & value of yawing
acceleration of zero.
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The simpler cases of a constant force or of zero force may be
shown to correspond to equations (22), (21), and (20) in a similar
menner. In the case of a constant force, the displacement approaches
a constant value, and the velocity and acceleration both approach zero.
In the case of zero force, all three quantities approach zero. The
origins of the grids for reading Dzw, D¥, and V¥ for this condition
all coincide with the origin of the spiral. The tilt of the grid lines
for reading values of DYy and D2y results from the fact that, when
a single-degree-of-freedom system with damping gerforms a free oscilla-
tion, the velocity leads the displacement by 90~ plus the angle
tan—l'as and the acceleration leads the velocity by 90o plus the same
angle. These relationships were pointed out by R. K. Mueller in
reference 8. The present analysis shows that this same concept can be
extended to the case of the system under the influence of a constant
force or a linearly increasing force, but that a special coordinate
system is required to take into account the constaent and linearly
increasing terms in the solution for the transient motion as well as
the term representing the damped oscillation.

In order to meke a graphical solution of the motion of the system
for specified values of the variables, suitable spirals and grids
should be comstructed. One spiral is required for the linear range of
operation, based on the damping ratio §c of the controlled system.
Another spiral is required for the saturated range of operation, based
on the damping ratio § of the uncontrolled system. A suitable set
of grids for each of the spirals should be prepared on separate sheets
of tracing paper. These grids may then be superimposed on the spirals
with the origins located to represent the various conditions of constant
rudder rate, constant rudder deflection, or linear operation of the
control. The procedure for obtaining a solution consists in tracing
the trajectory representing the motion of the system, with suitable
shifts in the grids or changes in the spiral at points where the mode
of operation changes from one regime to another. (These points are
called “"switch points” in ref. 6.) The correct procedure ‘for meking
these shifts is best described by means of specific examples. Several
such examples are now presented.

EXAMPLES

Five examples are presented to illustrate different features of
the method. These examples are summarized in the following table:
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xamp Control type: Rudder 1,
E le angle proportional to - imitation
T Yawing velocity Rudder rate limited
II Yawing velocity Rudder deflection limited
IIT Angle of yaw Rudder rate limited
Iv Angle of yaw Rudder deflection 1iﬁited
v Angle of yaw and Both rudder rate and
yawing velocity deflection limited

Specific values for the parameters and initial conditions are assumed
for each example. No attempt is made to investigate a range of these

parameters or initial conditions.

Example I.- The following parameters are assumed:

38,

Dy <L

t = 0.05 (o = 0.9987)
N = 0.3
= *0.125

from which may be derived, from equation (8),
. = 0.2 (wc = 0.9798)

The following initial conditions are assumed:

¥y = -0.531
(D¥)g = 0
5] = 0.2
o 2

from which may be derived, from equation (11),
(D), = 0.606

Two splrals should be constructed, corresponding to values of damping
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ratio of 0.05 and 0.2. A typical spiral, with the associated grids for
reading Dzw and DV, is shown in figure 2. A convenient and suffi-
ciently accurate method of constructing a logarithmic spiral as a
succession of circular arcs is presented in reference 6 (pt. 1,
appendix I, p. L41).

In figure 2, the x- and y-scales are drawn on the same graph as

the spiral. This representation is correct, inasmuch as the x- and
y-scales are in all cases considered to be centered at the origin of
the spiral. When the spiral is used, however, it must ordinarily be
rotated about its origin to pass through the desired initial point.
If the spiral is rotated, the x- and y-scales do not rotate but remain
fixed in direction. In practice, therefore, the values of x and Yy
are read with a ruler rather than from scales marked on the same sheet
as the spiral.

The graphical work for example I is shown in figure 3. In this
figure and succeeding figures in which graphical solutions are shown,
the scales labeled x and Yy are drawn, for convenience, with their
origin at the origin of the grid for D2V and DV. These scales should
be considered to show only the direction and spacing but not the true
position of the x- and y-scales, because the x- and y-scales are in all
cases considered to be centered at the origin of the spiral, which is
shifted in various parts of the solution. These scales therefore move
when the origin of the spiral changes.

05
In the linear range of operation, 3, = D¢§5$' The quantity
o)
DWS%% (called the "control function" in ref. 6) determines the rudder
position called for by the controlling mechanism. Since initially the

control function D¢§%§ = 0(1) = 0 whereas Bro = -0.25, the rudder is

not in the position called for by the controlling mechanism and will
run at its meximim rate in the direction to reduce the error between
its existing position and the position called for by the controlling
mechanism. These conditions establish that the initial interval of
the motion takes place with the rudder moving at a constant rate in

the positive direction. The spiral corresponding to { = 0.05 should
therefore be used. From formulas (20) and (21), the origin of the
spiral should be located at the intersection of the grid lines DQW =0
and DV = -RN = -(0.125)(0.3) = -0.0375. The spiral may now be rotated
so that it passes through the initial point (Dy)q =0, (Dzllr)o = 0.606.
The section of the spiral corresponding to the first interval may then
be traced in as shown in figure 3(a). The ends of the intervals, which
correspond to changes in the direction of motion of the rudder or to
changes in the mode of operation, are shown in figure 3 by circled
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points which are numbered to correspond to the number of the interval.
The radial line from the origin of the spiral passing through the
initial point corresponds to s = 0. Values of DEW and DY msy be
read from the grids at successive values of the radial angle 6 measured
from this radial line. For each value of 6, the corresponding value
of nondimensional time is determined from the formmla s =8, 1r

®
desired, the values of  may be determined at the same points by
substituting the values of D2y, Dy, and s into equation (11).

As the motion continues, the error between the rudder angle

existing and that called for by the control is eventually reduced to
zero, At this point the interval ends. This condition exists when

By = By + Rs = Dw-55$

Make the substitution s =

Elo

and solve for Dy. Then,

0
bry + By

o= 38,/ 3D

The curve showing DYy as a function of 6 satisfying this relation
is shown in figure 3 as a short dashed line. The intersection of this
curve and the spiral determines the time at which the rudder reaches
the angle called for by the control. Substitution of a few values of
6 into this equation will quickly show the values of 6 +that will
give values of DY close to those required to intersect the spiral.
As a result, only two or three points of the curve in the vicinity of
the intersection need to be plotted.

An slternate method for determining the time at which the rudder
reaches the angle called for by the control is to carry along an
auxgliary plot of the rudder angle &, and the control function

B
Dy Sﬁi as functions of s. The intersection of these curves then
determines the desired time. This type of plot is also valuable in
giving a physical picture of the action of the control.

When the rudder reaches the angle called for by the control, a
check must be made to find whether the system will thereafter operate
linearly or whether the maximum rate called for will again exceed that
available. The rate of rudder motion called for by the control is

D&, = DY 2%5
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Because the maximum rate availsble is R, this condition can be
satisfied only when

_ R
PV = 5o T5o

A pair of grid lines determined by this relation (Daw = 194%22)

is shown in figure 3. The area between these lines is designated as
the "linear band." Whenever the rudder reaches the angle called for
by the control at a point within the area bounded by these two lines,
the control operates linearly, and the graphical analysis must be
continued with the spiral for §c = 0.2. Whenever the trajectory
passes outside the area bounded by these two lines, however, the
rudder is moving at its maximum rate and the analysis must be made by
using the spiral for § = 0.05. Note that the trajectory may pass
through the linear band without the control operasting linearly. Only
when the rudder reaches the angle called for by the control within the
linear band does the control operate linearly.

The trajectory for the first interval of the motion is seen from
figure 3(a) to end outside the band of linear operation. The rudder
therefore reverses and moves at its maximum rate in the negative
direction for the next interval. The spiral is therefore shifted so
that its origin is located at the intersection of the grid lines
D¥ =0 and Df = -RN = -(-0.125)(0.3) = 0.0375. The spiral is then
rotated to pass through the final point of the first interval, which
becomes the initial point of the second interval. Values of 6 and s
for this interval, starting from zero at the start of the interval,
must be determined. These values of 6 &and s are used in determining
the values of Y for this interval and the end point of the interval.
Finally, the values of s 1in the second interval are added to those
in the first interval to determine the over-all time elapsed. The
end of the second interval is determined in the same way as the end of
the first interval.

The analysis is continued in this manner for several intervals,
the origin of the spiral being shifted each time the rudder motion
reverses. As shown in figure 3(a), the end point of the fifth interval
occurs within the band of linear operation. At this point, the work
must be continued on the spiral for §c = 0.2. In transferring the
work to the spiral for the linear mode of operation, allowance must,
in general, be made for the fact thet this spiral is based on
equation (7), which is expressed in terms of the time unit s, (eg. (6)).
For this reason, the derivatives D2¥ and DV and the limits of the
linear band must be converted to the new time unit whenever the work is
continued on the spiral for the linear range. The required relations
are
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2 D°
PV = waar
1+ NSE—
DV = __D¥
asr
1+ Ngﬁ—

Time as measured on this spiral must be converted back to units of s
when plotting the results. In the present example, 8 = 8, DCEW = Dew,
and DcV¥ = DV because 98./0V 1is zero. The transformation therefore
has no effect in this case.

The spiral for . =0.2 is located on its gwn grids so that
its origin is at D2¥ = 0, DY = O. Values of D% and DV from the
last point are replotted on these grids and the spiral is rotated to
pass through this point, as shown in figure 3(b). The work then
proceeds as before.

In the example chosen, the motion almost immediately passes out-
side of the band of linear operation again. The analysis is therefore
shifted back to the spiral for § = 0.05 for the seventh interval.
This interval again ends in the linear range, and thereafter the motion
remains linear and damps out exponentially.

Time histories of the yaw angle V¥, the control function DW'%%%’

and the rudder angle ©,, obtained from the preceding analysis, are
plotted in figure L.

Example IT.- The following paresmeters are assumed:

36,
v =t

¢ = 0.05 (w = 0.9987)
N = 0.3

Br o, = ¥0.125

from which may be derived, from equation (8),

£, = 0.2 (g = 0.9798)
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The following initial conditions are assumed:

¥o = -0.575
(D¥)g = ©

Since the rudder is constrained to move in proportion to the yawing
velocity as long as it is not against a stop,

8y = O

From equation (11) the following equation may be derived:

(D%¥)g = 0.575

The graphical work for this problem is shown in figure 5. This example
illustrates a procedure not found in example I in that the angle of yaw
may be read from suitable sets of vertical grid lines whenever the
rudder is against a stop. These grid lines cannot be used when the
rudder is moving at a constant rate. Initially, the control is
operating in its linear range; therefore, the spiral for Cc = 0.2 1is
used for the first interval (fig. 5(3)), with its origin located at

D2y = 0, Dy = O. The rudder always reaches its stop at a given value

. The values of where the
oDy D

of yawing velocity, because &y = Dy

rudder reaches its stops are

Tmax _____-1-0.122 =i-0-125
1

These lines are shown as limits of the linear band in figure 5. When
the trajectory passes outside one of these lines, the work mst be
continued on the spiral corresponding to = 0.05. This spiral is
centered on the grid lines D2y = O, Dy = O, as shown by equations (20)
and (21). Values of s may be determined at each point on the trajec-
tory as described for example I. If desired, values of V{ may be
obtained from the values of D2¥ and DYy, as described for example I,
or they may be read directly from suitable sets of vertical grid limnes
constructed in accordance with equation (23). This equation shows that
the line for +V = -NSrO passes through the origin of the spiral. When

the trajectory is gbove the line D¥ = 0.125, therefore, the grid line
¥ = -(0.3)(0.125) = -0.0375 passes through the origin. When the
trajectory is below the 1line DY = -0.125, the grid line V¥ = 0.0375
passes through the origin. When the system is operating in the linear
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range, of course, the grid line V¥ = O passes through the origin.
The grid lines corresponding to these conditions are shown by dotted
lines in figure 5.

0%
Time histories of the yaw angle YV, the control function DY 555,
and the rudder angle &, obtained for this problem are plotted in v
figure 6.

Example ITI.- The following parameters are assumed:

3%y
3 =2

£ =0.05 (o = 0.9987)
N =0.3

R = 10.125
from which may be derived, from equation (8),

CC = 0.0395 (we = 0.9992)

The following initiasl conditions are assumed:

Yo = -0.5
(W)O =0
Bry = -0-25

from which may be derived, from equation (11),
(DP¥)g = 0.575

The graphical work for this problem is shown in figure T, curve 1.
The procedure required is very similar to that of example I, although
different equations are required to determine the end points of the
intervals and the limits of the linear band.

The end of an interval is reached when

IS1o)
r = 8pytRe =¥ oE (24)

From equation (22), the value of V¥ may be obtained as follows:
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=X _ - -
v=X N(Sro 2gR) RNs (25)

Substitute equation (25) into equation (24), replace s by 6/w, and
solve for x. The result is

x = 9R<F + 55;755) + arom<h + asr/aw) SLwRN (26)

Numerical values may be substituted into equation (26) to obtain x as
a function of 6. A curve of x as a function of 6 satisfying this
relation may be plotted on the graph, as shown in figure T by a dashed
line. The intersection of this curve and the spiral determines the
time at which the rudder reaches the angle called for by the control.
When the values of x and 6 are plotted, it must be remembered that
the x- and y-axes are conslidered to pass through the origin of the
spiral, not the origin of the D2w, DY grid as shown in the figures.
Furthermore, values of € are measured about the origin of the spiral.

The complete solution may now be carried out as it was in the
previous examples. This solution, shown in figure 7, curve 1, indicates
that the motion approaches a steady hunting oscillation at an amplitude
slightly smaller than the initial amplitude. Time histories of the

9%
control function 'wsﬁz and the rudder angle &,, obtained from the
preceding analysis, are plotted in figure 8(a).

In order to show the behavior of the system when the motion is
started with smaller initial amplitudes, curves 2, 3, and 4 of figure T
were plotted. The resultant time histories are shown in figures 8(D)
to 8(d). These results indicate that, if the motion exceeds the linear
range only slightly, as in curve 3, the oscillation continues to build
up until the steady bunting condition of curve 1 is approached. On the
other hand, if the oscillation starts at a slightly smmller amplitude,
as in curve 4, it remains stable and demps out. Note that in the '
solution for the linear range of operation (fig. T(b)) a transformation
of the time scale is required.

Exasmple IV.- The following parameters are assumed:

5 =2
t =0.05 (w = 0.9987)
N =0.3

By = £0-250
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from which may be derived, from equation (8),
(. = 0.0395 (we = 0.9992)
The following initial conditions are assumed:

Yo = 0.5T5

The control attempts to move the rudder in accordance with the relation

6]
Op = V¥ SEE. Initially, the control calls for a value of o, equal to
(-0.575)(2) = -1.15, which is greater than the maximum rudder deflection.
The initial rudder angle is therefore the maximum value.

Sro = -0.25

From equation (11) the following equation may be derived:
(D%¥), = 0.650

The graphical work for this problem is shown in figure 9. Time histories

of the control function V 0d and the rudder angle &, are plotted in

figure 10.

Example V.- The following parameters are assumed:

9%
Sﬁi =2
35,
35? =1
¢ =0.05 (0 = 0.9987)
N = 0.3
R = 0.2
Br oy = *0.25

from which may be derived, from equation (8),

£. = 0.158 (w. = 0.987%4)
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The following initial conditions are assumed:

Vo = -0.325
(D¥), = 0
Brg = -0.25

from which may be derived, from equation (11),
2 —
(D=¥)g = 0.k

In this problem, the graphical work for which is shown in figure 11,
curve 1, somewhat more complicated relations exist for determining

, 35, 35,
the limits of linear operation. The quantity ﬂfgﬁ— + DW-§5$ determines

the rudder position called for by the controlling mechanism. Initially,
this quantity equals -0.650, whereas the rudder is against its negative
stop at -0.25. The rudder therefore stays at its negative stop for the
first interval. The rudder leaves its stop when the control function

o5 33
—-r = -0.
waw+mraw 0.25

This relation determines a straight line on the ¢ and DYy grids
which may be drewn in aes shown in figure 11. A similar line is drawn
to show when the rudder leaves its positive stop.

After the rudder leaves its stop, a check must be made to determine
whether the rudder will operate in the linear range. The rate of rudder
motion called for by the control is

35 3%
D&, = DY —Z + D?¥ X
v oDy

A second pair of lines determined by this relation,

0.2 = DYW(2) + D2¢(1), is shown in figure 11. The area bounded by the
two pairs of lines is designated as the "linear region" in the figure.
Since the first interval ends outside the area bounded by these lines,
the rudder moves at its maximum rate in the positive direction for the
second interval. The solution proceeds as in case I or III.

The second interval ends when the rudder reaches its maximum
deflection or when it reaches the angle called for by the control,
whichever occurs first. The time that the rudder must travel to reach
its positive stop after the start of an interval is determined from the

relation
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Sro + Rs = Srmax
from which
s =9__To * Orpex
== -

The value of 6 at which this condition is satisfied, in the present
instance, is

-(-0.25) + 0.25
0.2

6 = (0.9987) = 2.49 radians = 143°

The conditions under which the rudder reaches the angle called for by
the control are given by the formula

35,./3DY 98,./3D¥ 1
) — 6 e + 1| = OR[N —_— N
|0 S my v (f0 ¥ 0) - s < T aar/a4>+ 81‘0‘”( *

1 <%§ 68r/BD"l’
RIL a51'/3‘1’

In this formila, 6y 1is the angle between the positive x-axis and

the initial point of the interval, measured clockwise. This equation
is an extension of equation (26) to the present problem and is derived
in a similar manner. A few points of a curve of x as a function of
0 satisfying this relation may be plotted on the graph. The inter-
section of this curve and the spiral determines the time at which the
rudder reaches the angle called for by the control. Alternatively,

a plot of the rudder angle and the control function as functions of s
may be made to determine this point.

In the present instance, the rudder reaches its positive stop
before it reaches the angle called for by the control. In the third
interval, therefore, the rudder is against 1ts positive stop. The
solution proceeds as it did for the first interval.

Continuation of the solution, shown in figure 11, curve 1, results
in a closed cycle. The system therefore performs a steady hunting
oscillation for the initial conditions chosen. Time histories of the

yaw angle V¥, the control function ¢'§§3 + Dw'g§—, and the rudder

angle &, obtained from the preceding analysis are plotted in
figure 12(a).
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In order to show the behavior of the system when the motion is
started with a smaller initial amplitude, curve 2 of figure 11 was
plotted. This solution differs from that of curve 1 in that at the
end of the first interval the rudder reaches the angle called for by
the control before it reaches its positive stop. The details of the
graphical work are somewhat similar to those required for example I.
Time histories of the motion are shown in figure 12(b).

DISCUSSION OF RESULTS

Although the preceding discussion is intended primarily to
describe a graphical method for determining the motion of an auto-
matically controlled system when saturation effects are present, a
few results of interest may be obtained from the exasmples presented.

Variation of stebility with amplitude.- First, some general
statements may be made regarding the variation of the stability of a
system of the type considered as a function of amplitude. At
amplitudes within the linear range of operation of the control, the
period and damping may be predicted by well-known methods. For
practical controls, of course, the damping should usually be considerably
greater than that of the uncontrolled system. At very large amplitudes,
far beyond those where the linear range is first exceeded, the period
and damping of the system approach those of the uncontrolled system.
This tendency results from the fact that the moments supplied by the
control, when either its deflection or rate is limited, are very small
compared with the inherent restoring and damping moments acting on the
system at sufficiently large amplitudes. At intermediaste amplitudes,
the behavior of the system depends on how the saturation effects
influence the phase relationship between the motion of the system and
that of the control. If only the control deflection is limited, as in
example II or IV, the phase relationship tends to be unaffected, and a
smooth transition occurs between the characteristics of the controlled
system and that of the uncontrolled system as the amplitude is increased.
If only the control rate is limited, however, as in example I or III,

a phase lag approaching 90° in the motion of the control is introduced
and, as a result, the damping at intermediate amplitudes is decreased.
Whether actual instability occurs in some amplitude range depends
primarily on the amount of damping present in the uncontrolled system
and in the controlled system in its linear range of operation. In
example IIT presented previously (fig. 8), instability occurred at an
amplitude slightly beyond the linear range and continued up to several
times this amplitude. With both rate and deflection limited, a phase
lag intermediate between those produced by the rate and deflection
limitations may be present. If the deflection range is sufficiently




NACA TN 3034 25

large, however, the rate limitation may prevent the control from ever
reaching its stops; therefore the deflection limitation becomes
unimportant.

Examples I and II, presented previously, in which the control
produced primarily an increase in damping, show that the control
remained effective in producing damping even at amplitudes several
times that at which the saturation effects were first encountered
(figs. 4 and 6). This result may be of importance in the design of
yaw dampers for airplaenes because it indicates that, if some decrease
in damping at the larger amplitudes can be tolerated, the power output
of the controlling device may be made considerably less than that
required to provide linear operation throughout the range of amplitudes
encountered. As was previously mentioned, flight tests have shown that
increased damping of the lateral oscillations of airplanes is required
mainly at small amplitudes.

Extension of the examples to other conditions.- Some reduction in
the number of parameters in the problem has already been made by express-
ing time in terms of the nondimensional parameter s. The results of
any given problem may therefore be applied to systems with any natural
frequency by converting back from the nondimensional to the real time
unit. A further reduction in the number of parameters is possible by
dividing through the equations for the variations of V¥ and DV
(egs. (9) and (10)) by the quantity ERN. The problem is then completely

specified in terms of the quantities ¢, &,./R, V/RN, DV/RN, N %%I,
0%
and N —52. ‘A given solution may therefore be applied to systems with

other values of R and N provided the initial conditions are changed
so that the quantities BrO/R, Vo/ RN, and DVu/RN remain the same

provideg the gearing constants are changed so that the quantities N
B
and N Bﬁ% remain the same. Values of &./R, V/RN, and DV¥/RN

a
Sy
oV

obtained from the given solution apply to the new system. The values
of B®p, V, and DV may then be obtained by multiplying these parameters
by the appropriate factors.

Application to actual automatic controls.- Although actual auto-
matic controls do not follow the controlling quantities with zero lag
as assumed in the foregoing analysis, a method is suggested whereby
the same type of analysis may be applied to give approximate solutions
for saturstion effects on actual automatic controls. For this purpose,
the gearing constants OBp/0V and 35,/3DV should be selected to give
the same amplitude ratio and phase angle between the control motion and
the motion of the system as exists on the actual automatic control at
the frequency at which the controlled system oscillates in its linear
range. Usually this frequency may be approximately determined from
elementary considerations. The applicability of this method depends
on the condition that the saturation effects do not change the frequency
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very much. This condition may be expected to exist when the restoring
moment on the uncontrolled system is fairly large compared with the
restoring moment supplied by the control. The accuracy of the results
obtained by this method probably depends to some extent on the actual
details of the mechanism under consideration. This method is limited
in applicability to cases in which the controlled member can be
approximated as a single-degree-of-freedom system. No limitation is
placed on the complexity of the conmtrolling mechenism itself, inasmuch
as experimentally determined frequency-response data could be used to
select the gearing constants.

CONCILUSIONS

A graphical method is presented for determining the motion of a
freely oscillating system of one degree of freedom stabilized by a
controlling device which applies control force in proportion to the
displacement of the system, to its rate of change of displacement,
or both. The controlling member is assumed to have limitations on
its meaximum deflection, on its maximum rate of movement, or both.
Although the report is intended primarily to describe this-graphical
method, the following conclusions may be obtained from the examples
presented:

1. At sufficiently smasll amplitudes the period and damping of
the system correspond to those provided by linear operation of the
control whereas, at very large amplitudes, the period and damping
approach those of the uncontrolled system. At intermediate amplitudes,
if the deflection of the control is limited, a smooth transition
between these two conditions of period and damping takes place whereas,
if the rate of control movement is limited, the damping may be reduced
below that of the uncontrolled system. In some cases, limiting the
rate of control movement may produce instebility over a range of
amplitudes.

2. If the control produces primarily an increase in damping,
the control remains effective in producing damping even at amplitudes
several times that at which saturation effects are first encountered.
This effect may be useful in reducing the power requirements of yaw
dampers for airplanes.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., August 18, 1953.
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